Please use another Browser

It looks like you are using a browser that is not fully supported. Please note that there might be constraints on site display and usability. For the best experience we suggest that you download the newest version of a supported browser:

Internet Explorer, Chrome Browser, Firefox Browser, Safari Browser

Continue with the current browser

Siemens introduces DC transmission system for medium voltage to the market

    This makes MVDC PLUS suitable for connecting small communities in sparsely populated regions to the grid, and for connecting and stabilizing low-power distribution grids regardless of their voltage and frequency. This system enables a regulated power exchange between regional medium-voltage networks and microgrids. It also has greater independence from the high-voltage network. Cables as well as overhead lines can be used for transmission. It's also possible to use existing routes when it's necessary to increase power capacity without needing to move up to high-voltage level.
    The transmission system also allows operators to set up a power link between islands or offshore platforms and the mainland in order to avoid maintenance measures and costs for a diesel generator backup. For example, the system can be used as a backup solution for medium voltage in the production industry, where it increases the availability of machines and equipment and reduces production losses. As a backup power supply for data centers, MVDC PLUS ensures, for example, classification in a quality stage ("tier"). The medium-voltage DC transmission system is also attractive because of its cost efficiency and the short implementation time for combinations at the local level with different financing models, which are increasing in importance in countries that have a growing proportion of renewable and distributed energy sources.

    MVDC technology is based on the HVDC PLUS technology used in the Siemens HVDC transmission system, but is reduced to its basic functions. Like HVDC PLUS, the medium-voltage transmission system operates with voltage-source converters (VSC) in a modular multilevel converter design (MMC) that convert alternating current into direct current and vice versa. The current on the transmission route can flow in both directions. Thanks to the use of insulated-gate bipolar transistors (IGBT), the commutation processes in the converter run independent of the network voltage. Both converter stations can be operated as a static synchronous compensator (statcom). The extra high-speed control and protection intervention capabilities of the converters ensure the stability of the transmission system, which reduces network faults and malfunctions in the three-phase grid. This significantly improves the security of supply for energy suppliers and energy customers alike.
    Press Folders

    Follow us on Twitter

    Siemens Energy is one of the world’s leading energy technology companies. The company works with its customers and partners on energy systems for the future, thus supporting the transition to a more sustainable world. With its portfolio of products, solutions and services, Siemens Energy covers almost the entire energy value chain – from power generation and transmission to storage. The portfolio includes conventional and renewable energy technology, such as gas and steam turbines, hybrid power plants operated with hydrogen, and power generators and transformers. More than 50 percent of the portfolio has already been decarbonized. A majority stake in the listed company Siemens Gamesa Renewable Energy (SGRE) makes Siemens Energy a global market leader for renewable energies. An estimated one-sixth of the electricity generated worldwide is based on technologies from Siemens Energy. Siemens Energy employs more than 90,000 people worldwide in more than 90 countries and generated revenue of around €27.5 billion in fiscal year 2020.

    www.siemens-energy.com.

    Read more

    Contact

    Dietrich Biester

    Siemens Energy

    +49 (9131) 7-33559